

1. General

IPScan lets you control a scanner connected to a PC from a different PC in your

network.

In most cases IpScan will be installed on the terminal machine and the scanner will be

controlled through it from a different software using our SDK.

You will have to use the CSSN SDK for activating IPScan.

From the SDK point of view IPScan is just another scanner. Minor changes are required

to activate it just as any other CSSN scanner.

2. Network configuration

IPScan uses the TCP/IP protocol for the purpose of communicating with the controlling

application.

Currently, in version 2.0.1.4 IPScan must have its own IP address .The controlling

application must know this IP for establishing the connection.

In some cases the machine IPScan is installed on is connected to the network using

NAT (Doesn’t have it is own IP address outside your local network) you can use port

forwarding (i.e. - configure your router to transfer any communication on the chosen port

to the IPScan machine). This way machines from outside your network will be able to

connect to IPScan.

3. Setting up IPScan.

Run the IPScan setup program. On the software activation screen you will have to

provide an activation key that is suitable for IPScan.

On the port setup screen (see below) choose the desired port number; it can be any port

you like as long it is not blocked by firewalls, antivirus, and so on.

The data port number is optional it could be the same as the main port. It is relevant only

when working with asynchronous scans. The asynchronous scan function returns

immediately after the scanner completed the scanning and does not wait for the image

to arrive through the network. The regular scanning waits until the image arrives to the

controlling machine. Detailed usage is in the SDK documentation.

4. Using IPScan

After IPScan is installed it will be running in the background and will wait for incoming

connections.

The icons point out the state of IPScan:

1. IPScan license is not valid

2. IPScan is not connected to a controller.

3. IPScan is connected but not attached to a scanner.

4. IPScan is connected and the scanner attached.

Right clicking on the icon will open a pop up menu.

About – lets you see the current version installed on your machine.

Scan test - For testing purposes only, use it to test the scanner manually, it will work

only if a controller is connected to IPScan.

Configuration – Lets you change the port number IPScan listens to, and see your local

IP address.

Close – close the application.

5. Connecting to IPScan from the SDK.

The best way to use IPScan is integrating it in your software using our proprietary SDK.

The SDK functions are described in the files VC_SDK.pdf and ScanWex.pdf. The SDK

comes with samples in most of the programming languages.

Below is a sample C# code that demonstrates the usage of the SDK with IPScan:

// Declaration
private SCANWLib.SLibExClass mSDK_SLib;

private SCANWEXLib.SLibExClass mSDK_SLibEx;

private SCANWLib.IdDataClass mSDK_IDData;

// creating the library
mSDK_SLib = new SCANWLib.SLibExClass();

mSDK_SLibEx = new SCANWEXLib.SLibExClass();

mSDK_IDData = new SCANWLib.IdDataClass();

// Init

mSDK_SLibEx.InitLibraryEx("MyLicenseNumber", 0, "MyApplication");

mSDK_SLib.InitLibrary("MyLicenseNumber ");

mSDK_IDData.InitLibrary("MyLicenseNumber ");

// Ask the SDK to connect to IPScan with a default scanner

mSDK_SLibEx.UseFixedModel = (short)SCANNERS.CSSN_IP; // CSSN_IP the

// Give the remote IP address and the port number to the library

mSDK_SLibEx.SetRemoteIP(IPText.Text, nPort, (short)SCANNERS.CSSN_NONE);

// Make sure that the scanner is connected

int sVAlid = mSDK_SLib.IsScannerValid;

if (sVAlid == 0)

{

 MessageBox.Show("Scanner not found");

 return;

}

// Scan the file

mSDK_SLib.ScanToFileEx (“C:\\myFile.jpg”);

// Process the ID data exactly you would do it with a local scanner

int stateId;

int retVal;

stateId = mSDK_IDData.AutoDetectState("");

retVal = mSDK_IDData.ProcState("", stateId);

retVal = mSDK_IDData.RefreshData();

